Extensions 1→N→G→Q→1 with N=C2 and Q=C22×C52C8

Direct product G=N×Q with N=C2 and Q=C22×C52C8
dρLabelID
C23×C52C8320C2^3xC5:2C8320,1452


Non-split extensions G=N.Q with N=C2 and Q=C22×C52C8
extensionφ:Q→Aut NdρLabelID
C2.1(C22×C52C8) = C2×C4×C52C8central extension (φ=1)320C2.1(C2^2xC5:2C8)320,547
C2.2(C22×C52C8) = C22×C52C16central extension (φ=1)320C2.2(C2^2xC5:2C8)320,723
C2.3(C22×C52C8) = C2×C203C8central stem extension (φ=1)320C2.3(C2^2xC5:2C8)320,550
C2.4(C22×C52C8) = C42.6Dic5central stem extension (φ=1)160C2.4(C2^2xC5:2C8)320,552
C2.5(C22×C52C8) = D4×C52C8central stem extension (φ=1)160C2.5(C2^2xC5:2C8)320,637
C2.6(C22×C52C8) = Q8×C52C8central stem extension (φ=1)320C2.6(C2^2xC5:2C8)320,650
C2.7(C22×C52C8) = C2×C20.4C8central stem extension (φ=1)160C2.7(C2^2xC5:2C8)320,724
C2.8(C22×C52C8) = C40.70C23central stem extension (φ=1)1604C2.8(C2^2xC5:2C8)320,767
C2.9(C22×C52C8) = C2×C20.55D4central stem extension (φ=1)160C2.9(C2^2xC5:2C8)320,833

׿
×
𝔽